Iterative Me ds

Horet D. 8imon, Boeing Computer Services

Summary. In recent vears, such conjugate-gradient-type methods as orthomin have been used very successfully with varicus
preconditioners to solve the nasymmetric linear systems that arise in reservoir simulation. Here these successful iterative methods
are combined with a new set of preconditioners that have been derived from some powerful algorithros in direct sparse Gaussian
elimination. The SPARSPAK implementations of minimum degree and nested dissection algorithms have been modified 1o yield
incomplete LU factorizations. Their application to reservoir simulation problems is investigated bere.

Introduction

This paper describes a general sparse—lmear—equatwn solver called
ILUPACK,! which consists of three phases: reordering, incomplete
factorization, and iterative solution.

For each phase, a set of different algorithms is provided. Any
possible combination of algorithms for the different phases can be
used to obtain a solution method. Thus the ILUPACK linear equa-
tion solver provides a good experimental tool to explore the range
of applications and the efficiency of a particular solution technigue.
On the basis of experimental results. with ILUPACK, a special-
purpose linear equation solver can be developed, tatlored fo the par-
ticular apphcauon 4t hand.

ILUPACK is available on the MAINSTREAM EKS/VSP (Cx‘ay X-
MP) service of Boging Computer Services. There are no current
plans to distribute the sofiware because of its expermwnml nature.
A new package with capabilities similar to ILUPACK is under de-
velopment.2 This package will be tailored more closely to the ar-
- chitecture of current vector computers.
~ The user interface of ILUPACK is based on a set of subroutines
developed by George and Liu3 for SPARSPAK. This user interface
allows easy eniry of general sparse matrices. No a priori restric-
tions are made with respect to a block or band structure of the
matrix, or with respect to the number of unknowns per gridpoint.
Thus the package can easily handle irregniar grids, such as those
arising from reservoirs with fault links, in reservoirs with refined
grids around wells, or in reservoirs with coarser two-dimensional
grids modeling a surrounding aguifer.

ILUPACK provides the user with the capability of qmckly evalu-
ating new approaches to model difficult problems. It relieves the
user of the requirement to develop special-purpose factorization
modules for each such problem. On the other hand, the complete
generality of ILUPACK has its price, because special properties of
the underlying physical problem cannot be recovered from the purely
* algebraic treatment of the matrix problem. We believe, however,
that the capability of solving very general problems outweighs this
disadvantage.

yring Methods

The solution of sparse linear systems of equations of the form

by direct methods has been an area of intensive research during
the past 15 years. Most of the effort has been directed toward a
combination of Gaussian elimination with some reordering of the
equations and unknowns in Eq. 1. The goal is to obtain a permuted
system,

Copyright 1988 Society of Petroleum Enginsers

that can be solved more casily. Here A=PAQ, x=07x, and b=Fb.
Here P and (are permutation matrices chosen, for example, such
that the factorization of 4 incurs less fill-in than the factorization
of A. For general nonsymmetric 4, the permutations P and are
determined during the course of the numerical factorization and
usually depend on the numerical value of the entries in 4. The sit-
uation becomes mwuch easier when A is symmetric and positive -
definite. In this case, reorderings can be found on the basis of the
zexo/nonzero structure of A4 alone. The numerical values of the en-
tries of A are irrelevaiit, because if A is positive definite, then so
is A=P4APT, and a Choleski factorization, A=LL7, can always be
computed. Because of this decoupling of ordering and factoriza-
tion phase, the symmetric positive-definite case is easier than the
general case, and the state of sparse direct methods for syruvetric
positive-definite problems is very satisfactory.

The work by George and Liu* can be regarded as the culmina-
tion of research in that area. Their sparse-matrix package, SPARS-
PAK, provides high-guality implementations of several algorithms.

Of particular interest to us are some of their reordering algorithms.
The idea of combining a gcneml matrix reordermg algomhm with
an incomplete factorization is fairly new. This is the main topic
of this report.

A heuristic argument can be Used to justify why a reordering al-
gorithm should add to the benefits of incomplete factorizations. The
goal of any reordering is to produce a permutation so that the per-
muted system (Eq. 2) has less fill-in than the orxgmal system (Eq.
1). The number of nonzeros in the factors of A is less than the nura-
ber of nonzeros in the factors of A. Suppose an incomplete factori-
zation of both A and A is performed and all fill-in is discarded-—i.¢.,
only an incomplete factorization based on the structure of 4 or A
is computed. Then, because in the system of Eq. 2 a full factoriza-
tion would have incurred less overall fill-in than in Eq. 1, the in-
complete factor captures a larger share of information of the
complete factor in Eq. 2 than in Eq. 1. In an extreme case, one
could think of an example in which a reordering would result in
no fill-in whatsoever. Then the incomplete factors of Eq, 2 would
be identical to the complete factors of Eq. 2, whereas the incom-
plete factors of Eq. 1 still would be quite different from the com-
plete factors of Bq. 1. Thus, for a comparatively small effort, a
reordering may improve the quality of an incomplete factorization.

The sbove discussion indicates that our choice for reordering ai-
gorithins should be based on the amount of overall fill-in and the
generality permitted in the matrix structure—i.e., it should work
for general sparse matrices. SPARSPAK* prov1deq two such al
gorithms: the quotient minimum degree (QMD) algorithm and the
automated nested dissection (AND) algorithm. These two algoritdms
are provided in ILUPACK together with the option of performing
no reordering—i.e., using the natural ordering. Even though QMD
and AND have been designed for symmetric positive-definite ma-

trices, they can be used for general sparse, unsymmetric matrices,
A, by applying them to the sparsity structure of 4+A47. The de-
tails of QMD and AND are discussed by George and Liu. 4

The combination of reordering schemes with incompletc
factorizations—D2 and D4 orderings,>6 D4 ordering,” and D4
and minimum degree orderings® —has been investigated by sever-
al researchers. Wallis aiso mentions the possibility of using nested
dissection but gives no numerical results.

Incomplete Factorization

The incomplete LU factorization implemented in ILUPACK follows
ideas previously used by Watts? and Wallis.® As a first step, a
symbolic incomplete factorization is performed. The symbolic in-
complete factorization works only with the zero/nonzero structure
of the matrix 4+A7, where A from now on denotes the possibly
permuted coefficient matrix from Eq. 2. The symbolic incomplete
factorization computes the location of all possible fill-in terms in
the factors Z and U of 4. Because we work with a symmetric struc-
tare, the pattern of fill-in is also symmeiric. Following Wallis, 3
for each fill-in term xy in the (i,f) position of the mairix, a level
&x; 7} s associated. Initially define

8x;) ={ e 3)
%, otherwise
At the mth step in Gaussian elimination, define
oy =minffe;) M0) H0n) + 11 .. N (]

All entries in the LU factors corresponding to original matrix en-
tries have Level 0. Fill-in terms that arise because of the elimina-
tion of a Level O term through another Level 0 term have Level
1, etc. The undeslying idea is that the higher the level, the smalier
the magnitude of the fill-in term.

ILUPACK allows the user to determine the Jevel of fill-in by
specifying a positive integer or zero. The symbolic factorization
routine then computes the location of fill-in terms up to the nser-
specified level and sets up the data structare for the numerical in-
complete factorization. The actual implementations of both sym-
bolic and numerical incomplete factorization are modeled after the
corresponding SPARSPAK routines for general sparse factorization.
The SPARSPAK symbolic incomplete factorization has been modi-
fied to include the level count. The most significant change in the
numerical factorization occurs during the accumulation of the
modifications to a column (and row) at the jth step of Gaussian elimi-
nation. Although in the complete factorization routine, the modifi-
cations can be accumulated by adding the appropriate multiple of
an indexed sparse vector to a (compacted) dense vector (this oper-
ation s called sparse SAXPY), in the incomplete factorization, both
vectors are indexed and the indices have to be checked for a match
before any arithmetic is performed.

The SPARSPAK data structure with compacted subscripts has been
maintained in ILUPACK as well. The original motive for using com-
pacted subscripts was based on the observation that toward the end
of a factorization, the factors become increasingly dense and that
the columns of L (and rows of U) show very freguently repetitive
zero/nonzero patterns. Compacted subscripts use these repetitions
to save storage. For low-level incomplete factorizations, the first
obgervation can be made less frequently—i.e., a QMD ordering
infroduces a very random zero/nonzero pattern into the columns
of matrix, and a Level 0 or 1 incomplete factorization will inherit
this structure. Hence (as was expected) the idea of compacted sub-
scripts yields considerably less savings in storage in an incomplete
factorization.

iterative Methods
Let the incomplete LU factorization of 4 be given by

where E stands for the error committed by dropping high-level
terms; then L aud U are used to precondition the linear system (Eq.
1) in the foliowing way:

AUTWL - y=b o {6a)
and
=0TV (6b)

The reason so-calied right preconditioning is used in Eg. 6 is that
for an approximate solution y; to Fq. 6, the corresponding residual
is given by

rk=b-«AU”1L“Byk=b-—Axk, {h

i.e., the residual vector of the preconditioned system (Eq. 6) is iden-
tical to the residual vector of the original system (Eqg. 1 or 2). This
is not the case if left preconditioning i used.

ILUPACK provides implementdtions of seven iterative methods
for solving the preconditioned system (Eq. 6): ORTHOMIN (),
MR, GCR (&), GMRES (%), USYMILQ, USYMQR, and LSQR.

All these methods are in some sense extensions of the conjugate-
gradient methad for nonsymmetric matrices—i.e., unider ideal cir-
cumstarices they compute approximatiobs to the solution of Eq. 6
from & subspace of increasing dimension so that afier n steps the
exact solution is obtained. Also, sach of the methods reduces some
measure of the error at every iteration step. Although all the methods
have some drawbacks, they are ysually more powerful than other
iterative methods—e.g., SOR or SIP.

We follow here the notation of Elman'!? and Eiscnstag ef al,
and denote the truncated version of Vinsome’s!? orthomin method
by ORTHOMIN (), where £ is a positive integer denoting the di-
mension of the subspace used for approximation. The generslized
conjugate residual method, GCR (&), can be considered a restarted
version of orthomin. The minimum residus! method, MR, is a sim-
ple descent method corresponding to both ORTHOMIN (0) and
GCR (0). All three methods are discussed in detail by Elman. 10

The generalized minimal residual method, GMRES (%), has been
proposed recently by Saad and Schultz1? as an alternative to OR-
THOMIN (%) and GCR (k). Instead of using 474 orthégonal ba-
sis vectors for the subspace of dimension k, from which the
approximate solution x; is constructed, Szad and Schultz show how
simple orthogonality of the basis vectors suffices to construct a so-
lution that minimizes the residual norm over the subspace. GMRES
(k+1) thus can obtain the same approximate solution as GCR (k)
in about half the storage (4 times direction vectors are no longer
nceded), and about a third less work (excluding matrix multipty).
Numerical experience in a different applications area has confirmed
the superiority of GMRES over GCR or orthomin, 14.13

The methods USYMLQ and USYMQR by Saunders er al. 16 are
generalizations of earlier work by Paige and Ssunders!? for the
nonsymmetric case. Both methods use a subspace for computing
approximate solution vectors, which is built by use of multiplica-
tions by 4 and A7 alternately. Both methods have the theoretical-
ly pleasing property of not requiring the fail set of past ditection
vectors for the computation of the next direction, while still guaran-
tecing termindtion after at most » steps. Both methods can be de-
rived from the Lanczos algorithm for symmetric matrices and are
based on threc-term recurrences. USYMLQ minimizes the Fuclid-
ean nomm of the error over the subspace, whereas USYMOQR
minimizes the residual norm.

Finally, LSQR is an implementation of conjugate gradients ap-
plied to the normal equations, The implementation results from Paige
and Saunders’ 17 work and takes particular care to avoid condition-
ing problems by using orthogonal factorization techniques.

Yectorization

ILUPACK has been implemented on Cray-1S and Cray X-MP com-
puters, using a set of standard vectorization techniques described
in Ref. 19. These techniques include the replacement of computa-
tionally intensive parts of the code by calls to optimally coded Cray
assembly language (CAL) subroutines. The critical kernels in

TABLE 1—GENERAL PERFORMANCE OF LupACK (NATURAL ORDERING)

Tine for Time for Time for
Symbglic Numerical iterative
Factorization Factorization Solution Steps Total Storage
Example {seconds) {seconds) {seconds) {number) {words)
1 0.011 0.017 0.423 45 27,889
2 0.154 0.818 0.364 9 105,388
3 0.058 0.107 7.358 162 96,828
4 0.010 0.018 0.580 83 29,902
5 0.087 0.275 5.827 148 21,280

TABLE 2--TOTAL EXECUTION TIMES FOR VARIOUS LEVELS OF FILL-IN

Level 0 Level 1 fevel 2 Level 10
Factor Factor Factor Factor
Example Time {%) Time {%) Time {%) Time (%)
1 0.451 8 0.346 14 0.348 19 0.441% 36
2 1.026 69 1.437 75 1680 @ 75 3.053 84
3 7.521 2 6.382 5 7.532 8 8.917 20
4 0618 5 0.598] 0.615 12 0.861 22
8 8.171 6 No convergence 8.187] 5.85 33

TTILUPACK fall into two classes: operations with dense, long vec-
tors during the iteration, and operations with sparse vectors during
incomplete factorization, preconditioning (matrix solve), and matrix
multiply. The first class of operations vectorize naturally and the
vse of CAL~coded routines for vector inner product and update im-
proves the performance. In the second class of operations, a sparse
vector update (sparse or indexed SAXPY) dominates. Lewis and
Simon® report that 75% of the time of a complete sparse matrix
factorization can be spent in a segment of the code that can be re-
placed by a sparse SAXPY (also called SAXPYI). An optimally
coded implementation of SAXPYI is provided in VectorPak.?!

Although the percentage of execution time spent in a sparse SAX-
PY in ILUPACK is considerably less than the 75% cited (more likely
about 30%), hardware improvements will have a significant im-
pact.on the performance of ILUPACK. The Cray X-MP is now avail-
able with a new hardware feature (hardware gather/scatter), which
will improve the performance of a sparse SAXPY by a factor of
about 7 asymptotically. This feature consequently improves the per-
formance of ILUPACK by about 20% and could change the per-
spective on the relative cost of incomplete factorization and iterative
methods. The use of the Computational kerne! technigue will make
the transition to the Cray X-MP simple and the new benefits can
be reaped immediately. This study was carried out before the Cray
X-MP with hardware gather/scatter became available. A compan-
ion study, evaluating the performance of direct sparse Gaussian
elimination on the Cray X-MP,?® shows a speedup of almost a fac-
tor of 3 in comparison to the Cray-15.

Test Problems
The test problems were obtained from Sherman?? and are used in
a comparison study for linear algebra algorithms in reservoir simu-
lation. Each problem arises from a three-dimensional simadation
model on an n, Xn, Xn, grid with a seven-point finite-difference
approximation with n,. équations and unknowns per gridblock. A
natural grid numbering was used (x direction first, then y, then z)
to set up the problems. Corresponding right-side vectors were
© provided.

For the sake of completeness, brief problem descriptions are
. given.

Problem 1 (n,=n,=n,=10 and n,=1). The problem arises
from the pressure equation in a sequential black-oil simulation
model. The reservoir contains shale barriers that interfere with ver-
tical flow and cause an almost random heterogeneity in the coeffi-
cient matrix. In addition, there are large local contrasts in
transmissibility.

Problem 2 (n,~6, n,=06, n,=5, and n,=6). The problem arises
from the thermal simulation of a huff "u’ puff steam-injection prob-

lem during the steam-soak cycle. Temperature is associated with
Col. 4 of cach i, 3n,, submairix block, while pressure is associat-
ed with Col. 6.

Problem 3 (n, =33, n},=11, n,=13, and n,=1). The problem
arises from the pressure eguation in an implicit-pressure, explicit-
saturation (IMPES) simulation of a black-oil model. The reservoir
contains numerous zero-PV blocks and Jarge local contrasts in trans-
missibility. _

Problem 4 (n, =16, n,=23, n,=3, and n =1I). The problem
arises from the pressure eguation in an IMPES simmlation of a black-
oil model. The reservoir contains numerous zero-PV blocks and
barriers to flow.

Problem 5 (n,=16, n,=23, n,=3, and n.=3). The problem
arises from a fully implicit, simultaneous-solution simulation of 2
black-oil model. The reservoir is the same one as that associated
with Problem 4.

Al the problems are very difficult numerically. Structurally, how-
ever, they are comparatively simple, and thus not an ideal test set
for the general-purpose incomplete factorization routines in
ILUPACK.

Mumericsl Resifits

All pumerical results were obtgined on a 2-million-word Cray-18
with CFT 1.11 and COS 1.12. All given cxeccution times are meas-
ured in seconds. Ierative methods were terminated when the rela-
tive residual became less than 1076, The limit on the number of
iteration steps was set to 120 unless mentioned otherwise.

In the numerical experiments reporied here, we attempt first to
assess the efficiency of the various possible preconditioners. For
that reason, only one iterative method is used in the first set of
reported experiments. We decided to choose GCR (5) because it
performed well on almost all examples and because the reservoir
simulation community is familiar with this restarted orthomin
method. By restricting ourselves to only one iterative method, we
can assess the merits of different preconditioners more casily. We
are thus implicitly assuming that all conjugate-gradient-type itera-
tive methods are affected in a similar way by the same type of
preconditioning. There is reason to believe that this assumption is
correct.

General Performance of Incomplete Factorization. Table 1 gives
an overview of the general performance of incomplete factoriza-
tions with iterative methods. The natural ordering and a Level 0
preconditioning for each of the five problems, the execution times
of symbolic and numerical factorization, and iterative solution are
given, as well as the oumber of iteration steps taken by GCR (5)
and the total storage requirements. Generally, the time spent in the

TABLE 3--INFLUENCE OF REORDERING METHODS: TOTAL EXECUTION TIRE
Matural Order ‘Natural Order AND AND QMD amMD
Level 0 Level 1 Level © Level 1 Level 0 Lovel 1
Qrdar + Order + Order + Order + Order + Order +
Total Factor Total Factor Tota} Factor Total Factor Total Factor Total Factor

Example Time {9%) Time (%) Time {%e) Time {%) Time {%) Time {%)

1 0.451 6 0.346 14 0.741 12 0.701 16 0.983 36 0.870 38

2 1.028 6% 1.437 75 Stagnation 1.888 63 7.324 87 B.13t 78

3 No convergence 6.382 5 Stagnation Stagnation Stagnation Stagnation

4 0.619 5 0.588 -] 1.115 8 1.133 10 No convergence 1.143 28

5 Mo convergence - No convergence Stagnation Stagnation Stagnation Stagnation

TABLE 4—INFLUENCE OF REORDERING METHODS: ITERATIVE SOLUTION ONLY
Matural Order Natural Order | AND AND QMD amD
~ Level O Level 1 Lavel O Level 1 Level O Level 1

Timefor Steps Timefor Steps Timefor Steps Time for Steps Time for Steps Time for Steps
Example Heration {(number) leration (number) Reration (number) Heration (number) lMeration (number) leration (number)
1 0.423 45 0.297 26 0.652 75 0.598 57 0.832 71 0.597 57
2 0.317 9 0.364 9 - >120 0.708 20 0.952 31 1.501 45
3 — >120 86.084 111 — >120 —_ >120 -— >120 — > 120
4 0.590 83 0.545 49 1.023 117 1.017 99 — »>120 0.821 80
5 — >120 — >120 >120 >120 —_ >120 — >120

» TABLE 5—FASTEST SOLUTION METHOD

Problem Method Time Steps
1 NATALU(3-GMRES(10) 0.32% 20
2 NAT-ILUQ)-GMRES(®) 1.026 8
3 NAT-ILU(1)}-GCR(5) - 6.382 111
4 NAT-ILU(1)}-GCR(5) 0.598 49
5 NAT-ILL(10)-GCR(5) 5.850 58

factorization part is small compared with the solution phase, ex-
cept for Problem 2. This problem is fairly dense, with five unknowns
per gridpoint, and thus the incomplete factorization even at Level
0 becomes expensive.

For Examples 3 and 5, GCR (5) did not converge in 120 steps.
The residuals, however, were reduced to 3.04X10~* and
1.28 X103, respectively; and the method is converging.

Level of Fill-In. If storage is a primary concern to a user, the lev-
el of fill-in should be set to zero. Because main memory is not a
constraint on the Cray-18 for the size of problem considered here,
we atternpted next to find the optimal level of fill based on the total
cxecation time. ‘

Table 2 lists the total time spent until an approximate solution
was found to the desired accuracy for incomplete factorizations of
Levels 0, 1, 2, and 10, where the natural ordering was used. The
maximum number of steps was 240.

The fraction of the time spent for the symbolic and numerical
incomplete factorization is listed as well. In general, the total number
of iteration steps decreases as the level of fill-in increases. But at
the same time, the cost of each step increases as well, because the
more-expensive preconditioning bas to be applied at each step. These

- tradeoffs are usually quite difficult to estimate a prierd. The figures
obtained in Table 2 indicate that Levels § and | preconditioning
are best in most of the test cases. The exception is Example 5, where
a high-level preconditioning yiclds the best result. Example 5 also
shows an odd behavior by not converging in 240 steps for Level
1, whereas convergence occurs with Level 0.

Reordering the Matrix. The influence of the reordering methods
on the convergence behavior of GCR (5) was tested as follows.
QMD and AND reorderings were applied before Levels 0 and 2
incomplete factorizations were carried out. The iteration limit was
set to 120. Table 3 summarizes the total execution time for these

tests, together with the fraction of time spent for ordering plus in-
complete factorization. Table 4 lists the time spent in the iteration
only, together with the awmber of iteration steps. The figures in
Table 3 reveal that the use of QMD and AND as reordering methods
do not yield the expected performance gains in the problems con-
sidered. .

In many cases, a stagnation of the iteration was observed, which
implies that the symmetric part of the preconditioned matrix is be-
coming indefinitc more frequently for QMD and AND precondi-
tioning. The possible indefiniteness may also influence the
convergence behavior in the nonstagnant cases. It can also be ob-
served (in Example 2) that the QMD reordering is comparatively
expensive. Receuntly, a more efficient implementation of the
minimum-degree algorithm became available.?> On some large ex-
amples, almost an order of magnitude speedup was observed in the
reordering phase when the new multiple-minimum-degree algorithm
by Liu was used.

Tterative Methods. Some numerical comparisons of the iterative
methods in ILUPACK are reported in Saunders et al, *6 They indi-
cate that such methods as USYMLQ, USYMQR, and LSQR arc
advantageous if the coefficient matrix is very wnsymietric—i.e.,
if its skew symmetric part, (4—AT)/2, is large compared with its
symmetric part, (4+A47)/2. They also can outperform orthomin-
type methods if the syminetric part, (4+A47)/2, is indefinite. In
that case, ORTHOMIN (k), GCR (k), and GMRES (k) may stag-
nate, whereas USYMLQ, USYMQR, and LSQR converge. The
underlying linear equations in reservoir simulation problems, how-
ever, are sufficiently close to being symmetric, so that GMRES
(k) appears to be the method of choice—for reasons of economy,
as discussed, and because of its convergence properties.

Because it was impossible to test all combinations for all prob-
lems, we proceeded as follows. The most-efficient preconditioner
was determined with GCR (5). Then it was considered for all or-
derings and incomplete factorizations with Levels 0 through 3 and
10. Then this preconditioner was combined with some representa-
tive of all iterative methods. Finaily, additional tests were performed
by varying the parameter k for the iterative methods.

Table 5 lists the fastest solution method determined in this fashion
for each problem. The performance of the fastest three to five com-
binations was usually very close. For all problems, the fastest three
runs were obtained with either GCR or GMRES. We conclude that
for the type of problems in reservoir simulation considered here,
GCR or GMRES appear to be the best-suited iterative methods.

Conclusions

1. We have demonstrated that ILUPACK is a versatile, general-
purpose package for the iterative solution of large sparse linear sys-

tems. Its greatest power is its flexibility, its large number of possi- |

bie methods, and its wide range of applicability.

2. We succeeded in solving a test set of reservoir simulation prob-
lems, which is considered to be very difficult. Although the rest
set is not representative, we believe that within the options provid-
ed by ILUPACK, the preferable solution method for reservoir simu-
lation problems is a Level § or 1 preconditioning.

3. The use of QMD and AND reorderings yields no improve-
ment in the convergence behavior of the iterative methods in the
test set considered here. Whether QMD or AND offer advantages
for structurally more complex matrices is yet to be determined. A
nested dissection ordering based on the underlying grid structure,
as opposed to automated nested dissection ordering considered here,
may be more successful because it is comparatively casily generat-
ed and better reflects the physical structure of the underlying simu-
lation problem. This is also a topic for further research.

4. On the basis of numerical observations made here, we believe
that GCR and GMRES are the most-effective iterative methods for
the type of problems encountered in reservoir simulation.

Nomenclature
@, Xy = matrix entries in (4,7} position
AAE,P,Q = real nXn matrices
b ,5, Tgs
x,%,v;, = real columns of dimension #
L = lower triangular matrix
n,. = npumber of components
n, = number of gridblocks in x direction
n, = number of gridblocks in y direction
n, = number of gridbiocks in z direction
U = upper triangular matrix
¢ = level of fill-in associated with a position

Superscript
: T= transpose

Acknowiedgments

I thank my colleagues R.G. Grimes, J.L. Phillips, E.L. Yip, and
D.P. Young for their helpful comments and discussions. Special
thanks are due J.G. Lewis, who originaily proposed this project

and supported its progress through numerous invaluable suggestions.

Reforences

1. Simon, H.D.: User Guide for ILUPACK: Incomplete LU Factorization
and Iterative Methods, ETA-library report, Boeing Computer Services,
Seattle (Dec. 1984).

2. Ashcrafi, C. and Grimes, R.G.: “‘On Vectorizing Incomplete Factori-
zations and SSOR Preconditioners,”” report ETA-TR-41, Boeing Com-
puter Services, Seattle (1986).

3. George, A. and Lin, I.W.: **The Design of a User Interface for 3 Sparse
Matrix Package,” Trans., ACM, Math. Software (1979} 5, 139-62.

4. George, A. and Liu, J.W.: Computer Solusion of Large Sparse Posi-
tive Diefinite Systems, Prentice-Hall Inc., Englewood Cliffs, NJ (1981).

5. Behie, A. and Forsyth, P.A. Jr.: “‘Practical Considerations for Incom-
plete Factorization Methods in Reservoir Simmlation,”” paper SPE 12263
presented at the 1983 SPE Reservoir Simulation Symposium, San Fran-
cisco, Nov. 15-18.

. Behie, A. and Forsyth, P.A. Jr.: “‘Incomplete Factorization Methods
for Fully fmplicit Simulation of Enhanced Qil Recovery,” SIAM J. Sci.
Stas. Comp. (1984) 8, 543-61.

7. Tan, T.B.S. and Letkeman, J.P.: “‘Application of D4 Ordering and
Minimization in an Effective Partial Matrix Inverse Iterative Method,™
paper SPE 10493 presented at the 1982 SPE Symposium on Reservoir
Simulation; New Orleans, Sept. 26-29.

8. Wallis, J.R.: “‘Incomplete Ganssian Elimination as a Preconditioning
for Generalized Conjugate Gradient Acceleration,’” paper SPE 12265
presented at the 1983 SPE Reservoir Simulation Symposium, San Fran-
cisco, Nov. 15-18.

9. Watts, J.W.: **A Conjugate Gradient-Truncated Direct Method for the
Tterative Solution of the Reservoir Simulation Pressure Equation,”” SPEJ
(June 1981) 345-53.

10. Elman, H.C.: “‘lIterative Methods for Large, Sparse, Nonsymmetric
Systems of Linear Equations,”” Report 229, Dept. of Comp. Science,
Yale U., New Haven, CT (1982).

11. Eiscnstat, 8.C., Elman, H.C., and Schuliz, M.H.: *‘Variational Itera-
tive Methods for Nonsymmetric Systemns of Linear Equations,” SIAM
J. Numer. Anal. (1983) 28, 345-57.

12. Vinsome, P.K.W.: “‘Orthormin, an Iterative Method for Selving Sparse
Banded Sets of Simultancous Linear Equations,”” paper SPE 5729
presented at the 1976 SPE Symposium on Numerical Sirnulation of
Reservoir Performance, Los Angeles, Feb. 19-20.

13, Saad, Y. and Schultz, M.H.: “GMRES—A Generalized Minimal
Residual Algorithm for Solving Nonsymmetric Linear Systems,” SIAM
J. 8ci. Stat. Computing (1986) 7, 863-69.

14. “Transonic Pan Air Computer Code,”” NASA report, Contract No.
NAS2-1181 (Oct. 1984).

15. Wigton, L.B., Yu, N.J., and Young, D.P.: “GMRES Acceleration of
Computational Fluid Dynamics Codes,” AIAA, puper 85-1494 (July
1985).

16. Saunders, M.A., Simon, H.D., and Yip, E.L.: “Two Conjugate-
Gradient-Type Methods for Sparse Unsymmetric Linear Equations,”
report ETA-TR-18, Boeing Computer Services, Seattle (June 1984).

17. Paige, C.C. and Saunders, M.A.: **Solution of Sparse Indefinite Sys-
tems of Linear Equations,”” SIAM J. Num. Anal. (1975) 12, 617-29.

18. Paige, C.C. and Saunders, M.A.: “LSQR: An Algorithm for Sparse
Linear Equations and Sparse Least Squares,”” Trans., ACM, Math. Soft-
ware (1982) 8, 43-71.

19. Simon, H.D.: ““Supercomputer Vectorization and Optimization Guide,”
Report ETA-TR-22, Boeing Computer Services, Seattle (Oct. 1984).

20. Lewis, J.G. and Simon, H.D.: *“The fmpact of Hardware Cather/Scatier

. on Sparsc Gaussian Elimination,”” Report ETA-TR-33, Boeing Com-
puter Services, Seaitle (1986).

21. “VectorPak Users Manual,”” Boeing Computer Services, Seattle, Docu-
ment No. 20460-0501-R1 (1987).

22. Sherman, A.H.: “‘Lipear Algebra for Reservoir Simutation Compari-
son Study of Mumerical Algorithims,”” J.8. Nolen Assocs. Inc., Houston
(Sept. 1984).

23. Liu, 3.W.H.: “*“Modification of the Minimmm Degree Algorithm by Mul-
tiple Elimination,” Trans., ACM, Math. Software (1985) 11, 141-33.

SPERE

Original SPE manuscript recelved for review Dec. 18, 1888. Paper accepted for publi-
cation Jan. 14, 1987. Revisad manuscript received Aprli 20, 1987, Paper (SPE 13533)
first presented at the 1985 SPE Reservolr Simulation Symposium held in Dallas, Feb.
10-13. .

